
The Forge Interview
Christian Robles

November 2023



Contents

• Feedback

• Project

• Q&A



Feedback



Feedback

Framework Design
• Thin, 1 abstraction away from underlying type

• DX-like, easy to learn with Vulkan background

• Function linking system easy to use/extend, minorly inconvenient to find 
implementations



Feedback

“Render Targets”/addRenderTarget
• Very convenient for common use cases

• Internally complex

• Overrides format choice (R8_UINT -> R8_TYPELESS)

• Expected this to be handled by ResourceLoader

Transition barriers, descriptor sets, pipelines, root signatures, buffers, 
shaders…

• Easy to use with ample examples

• Might have had similar experience if I’d had to modify



Feedback

FSL
• FSL generally easy to use but coarse documentation makes small syntax issues 

slow to remedy. Similar to HLSL but not exact

• Broad set of examples covers most needs

• Wave Ops feature set unclear – WaveActiveMax but not WaveActiveMin, 
WaveGetLaneIndex but not WaveGetLaneCount



Feedback

• Nice to have: Clang format

• Subjective: Cmake, Handle system



Project



Project Overview

• Scoping/topic selection

• NAS Theory

• NAS Implementation

• Optionals

• Issues



What to make?

• Coverage over common systems (shaders, pipelines, UI, etc)

• Aim for 1 week ramp up + 2 weeks work + 1 week flex/wrap up

• Focus on what I know, implement something new



What I was working on

• During MSc: light transport algorithms -> purpose-built research-
oriented CPU path tracers

• Wanted to build a GPU rendering platform to use as testbed
• Multi year project

• Performant architecture before focusing on effects



Interest in VRS

• Topical similarities to Directed Research project

• Works with visibility buffer

• Established industry support implies broad hardware support
• (Wolfenstein II, Gears 5, CoD MW(2020))



Research

• Tier 2 Variable Rate Shading in Gears 5, Ms Game Dev 2021 
https://www.youtube.com/watch?v=-exWLpgnOJ4

• Software-based Variable Rate Shading in Call of Duty: Modern 
Warfare (2020) https://research.activision.com/publications/2020-
09/software-based-variable-rate-shading-in-call-of-duty--modern-war

➢Visually Lossless Content and Motion Adaptive Shading in Games, Ley 
Y. et al, NVIDIA 2019 http://leiy.cc/publications/nas/nas-pacmcgit.pdf

• Software VRS with Visibility Buffer Rendering, John Hable 2021 
http://filmicworlds.com/blog/software-vrs-with-visibility-buffer-
rendering/

https://www.youtube.com/watch?v=-exWLpgnOJ4
https://research.activision.com/publications/2020-09/software-based-variable-rate-shading-in-call-of-duty--modern-war
https://research.activision.com/publications/2020-09/software-based-variable-rate-shading-in-call-of-duty--modern-war
http://leiy.cc/publications/nas/nas-pacmcgit.pdf
http://filmicworlds.com/blog/software-vrs-with-visibility-buffer-rendering/
http://filmicworlds.com/blog/software-vrs-with-visibility-buffer-rendering/


Nvidia Adaptive Shading (NAS) Quick View

• Tier-2 Hardware VRS

• Goal: improve performance with no loss in perceived quality



Why Hardware VRS

Pros:

• Minimal changes to render pipeline

• Opportunity to extend SDK

• No existing hardware VRS example

Cons:

• Have to update platform dependencies (Win SDK version, command 
list version)



Why NAS

• Spending “error budget” clever approach

• Multifaceted – image-based and motion-adaptive shading

• Efficient – optimized thread group assignment and closed-form error 
equations

• Publication & reference repo



NAS Introduction

Goal: maximize shading rate reduction while keeping error below 
perceptible threshold

1. Analyze previous frame with loss estimator

2. Predict error in current frame under reduced shading rates and 
motion velocity

3. Pick lowest shading rate under perception threshold



Loss Estimator

• Block error can be evaluated using L1 (average absolute), L2 (RMSE) , or L∞ (max) norms
• Paper uses L2 to simplify derivation, implementation uses L∞ for fastest computation



Motion Adaptation

• Motion reduces perceived error

• Velocity vector (previous frame reprojection)

• Closed-form motion error scaling parameters derived from frequency 
analysis



Shading Rate Selection

• Tuning parameters
• Brightness Sensitivity – raises average luma (more reduction in dim regions)

• Error sensitivity – error threshold τ

• Motion sensitivity – increases motion scaling



Implementation - Framework

• D3D12
• Added cmdSetShadingRateImage

• Added gpu setting query for VRS tile size

• Updated addRenderTarget to allow shading rate images by texture creation 
flag



Implementation

• Uber pixel shader -> single threaded compute shaders -> thread 
groups & wave ops

• NAS Data Surface

• Shading Rate Image

• Shading Rate Overlay

• Present Debug View



Implementation

• NAS Data Surface Compute Shader
• Performed at end of current frame

• Inputs: current frame, brightness sensitivity

• 1 dispatch per VRS tile

• 8*4 threads * 8 samples per thread = 256 samples = 16 * 16 block

• Computes estimated Qtr/Half rate block error from last frame result

• Outputs: float2 X,Y error estimate UAV



Implementation

• Shading Rate Compute Shader
• Performed just before shading pass

• Inputs: NAS Data Surface, Depth Image, reprojection params, sensitivities

• 1 dispatch per VRS tile

• 8*4 threads * 8 samples per thread = 256 samples = 16 * 16 block

• Computes motion adaptation and checks adapted error against threshold

• Outputs: uint shading rate value UAV



Implementation

• Shading Rate Overlay Fragment Shader
• Performed immediately after shading rate image

• Inputs: Shading rate image

• Visualizes shading rate 



Implementation

• Present Shader
• Extended to view VRS debug images

• Inputs: NAS data, Shading Rate Image, Shading Rate Overlay, debug view 
mode



Optionals

• Shading rate smoothing

• Error stabilization (flicker reduction)

• Material based shading rate adaptation (aliasing from bright specular 
highlights)



Issues

• No recommended values for parameters or recommendations on how 
to select values

• NAS data surface produces wrong error at partially covered tiles –
many samples eval. 0 -> very small average -> boosts error estimate

• MSAA support matrix not honored in VRS rate selection



Results/Demo



Q&A



Thank you!


	Slide 1: The Forge Interview
	Slide 2: Contents
	Slide 3: Feedback
	Slide 4: Feedback
	Slide 5: Feedback
	Slide 6: Feedback
	Slide 7: Feedback
	Slide 8: Project
	Slide 9: Project Overview
	Slide 10: What to make?
	Slide 11: What I was working on
	Slide 12: Interest in VRS
	Slide 13: Research
	Slide 14: Nvidia Adaptive Shading (NAS) Quick View
	Slide 15: Why Hardware VRS
	Slide 16: Why NAS
	Slide 17: NAS Introduction
	Slide 18: Loss Estimator
	Slide 19: Motion Adaptation
	Slide 20: Shading Rate Selection
	Slide 21: Implementation - Framework
	Slide 22: Implementation
	Slide 23: Implementation
	Slide 24: Implementation
	Slide 25: Implementation
	Slide 26: Implementation
	Slide 27: Optionals
	Slide 28: Issues
	Slide 29: Results/Demo
	Slide 30: Q&A
	Slide 31: Thank you!

