
Procedural Rendering w/ Ray Marching

By: Christian Robles, Hoseung Lee, Samuel Yin, Vansh Dhar

CSCI 580: 3D Graphics & Rendering

 University of Southern California

Overview
- Ray Marching Intro & Core Renderer Implementation

- Constructive Solid Geometry

- Procedural Materials & Surfaces

- GPU Parallelization

Ray Tracing vs. Ray Marching

- Explicit vs. Implicit Intersection Tests

Renderer Implementation
- Surface. double distance(vec3 p)
- Material. vec3 color(ray r, vec3 p, vec3 N, vector<light> lights)
- Scene.

bool near_zero(double d)

double distance_estimator(vec3 p)

vec3 normal(vec3 p)

bool march(ray r, hit_record rec)

vec3 ray_color(ray r)

Marching Algorithm
for each pixel

let ray R be a camera ray in the direction of the pixel

let t be 0

while t < t_max

let D be the distance from R(t) to the nearest surface

if D is near-zero

store intersection information on the hit record

return true

if D < 0.001, D = 0.001

t += D

return false

Normals

Materials
- Flat: returns a constant color

- Normals: maps a normal vector to RGB

- Diffuse: simple diffuse material with directional lighting

- Clouds: procedural clouds with depth marching

Surfaces
SDF for some point p(x,y,z)

- Sphere: |(p - C)| - r

- Box: length(max(|P| - R, 0))

Surfaces - Continued

Pyramid Cylinder Triangular Prism

Surfaces - Continued
Infinitely Long Cylinder

=

Constructive Solid Geometry
Constructive Solid Geometry is the

process of combining simple objects

using Boolean operators to create

more complex objects.

Ray Marching makes this process

simple!

Union

Union is the min distance between

objects

We already are finding the minimum

distance in the ray marching algorithm

so we combine objects by default.

Intersection

To get the intersection, we just need to get

the maximum of the distances instead of

the minimum

The only way the maximum of 2 distances

can be close to 0 (near the surface) is if

both are close to 0.

Difference

To get the difference, we negate the

distance of one of the object and take the

maximum distance.

This essentially creates an object that can

only exist outside the inverted object and

inside the other object

Smoothing
By applying a blending function we can smooth out

the edges between objects

double smoothUnion(double d1, double d2, double k){

 float h = max(k - |d1 - d2|, 0.0);

 return min(d1, d2) - h * h * 0.25/k;

}

No Smoothing

K = 0.2 K =0.6 K = 0.9

Smoothing Examples for Difference

Rendering Clouds

- A texture function returns a [0, 1.0] texture value T for some input p(x,y,z)

- We can additionally march through our surfaces and generate texture values in 3d

Noise Functions
Gardner Noise Perlin Noise

Results

- Gardner Sphere, Perlin Sphere, Depth Marched Gardner Sphere, Depth Marched

Perlin Sphere

- Lighting can be applied to improve physical plausibility

Procedural Surfaces

- We can modify the SDF of a surface with a procedural displacement value

- Similar to bump mapping, but alters the surface rather than texture

- We get bump mapped textures “for free” with gradient normals

Fractals
- Fractals are infinitely complex mathematically defined structures

- https://en.wikipedia.org/wiki/Mandelbrot_set

Fractals - Mandelbulb
-Ray marching works well with infinitely complex shapes like fractals. Analytic

intersection doesn’t exist

-No function that tells you “your ray is X units of distance away from the fractal”

-There is a function that tells you the fractal is at MOST X units of distance away

Parallelization using CUDA

Diagram depicting software and hardware abstraction for

GPU programming

The Algorithm run by each Thread

Parallelization Experiments and Results

Conclusion, Q&A

References
● https://raytracing.github.io/

● Geoffrey Y. Gardner. Visual Simulation of Clouds. SIGGRAPH ‘85

● Ken Perlin. 1985. An Image Synthesizer. SIGGRAPH ‘85

● https://developer.nvidia.com/blog/accelerated-ray-tracing-cuda/

● https://www.skytopia.com/project/fractal/mandelbulb.html

● https://iquilezles.org/articles/distfunctions/

● http://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/

● https://michaelwalczyk.com/blog-ray-marching.html

https://raytracing.github.io/
https://developer.nvidia.com/blog/accelerated-ray-tracing-cuda/
https://www.skytopia.com/project/fractal/mandelbulb.html
https://iquilezles.org/articles/distfunctions/
http://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/
https://michaelwalczyk.com/blog-ray-marching.html

