CSCI 580: 3D Graphics & Rendering
University of Southern California

Procedural Rendering w/ Ray Marching

By: Christian Robles, Hoseung Lee, Samuel Yin, Vansh Dhar

Overview

- Ray Marching Intro & Core Renderer Implementation
- Constructive Solid Geometry

- Procedural Materials & Surfaces
- GPU Parallelization

Ray Tracing vs. Ray Marching

8 Light Source

/# Shadow Ray

- Explicit vs. Implicit Intersection Tests

Renderer Implementation

- Surface. double distance(vec3 p)
- Material. vec3 color(ray r, vec3 p, vec3 N, vector<light> lights)
- Scene.

bool near_zero(double d)

double distance_estimator(vec3 p)
vec3 normal(vec3 p)

bool march(ray r, hit_record rec)

vec3 ray_color(ray r)

Marching Algorithm

for each pixel
let ray R be a camera ray in the direction of the pixel
let t be ©
while t < t_max
let D be the distance from R(t) to the nearest surface
if D is near-zero
store intersection information on the hit record
return true
if D < 0.601, D = 0.001
t += D

return false

Normals

of of of
(%’a_y’@)

Materials

- Flat: returns a constant color

- Normals: maps a normal vector to RGB

- Diffuse: simple diffuse material with directional lighting
- Clouds: procedural clouds with depth marching

Surfaces

SDF for some point p(x,y,z)
- Sphere: [(p-C)| -1

- Box: length(max(|P| - R, 0))

Surfaces - Continued

)

Pyramid Cylinder Triangular Prism

Surfaces - Continued
Infinitely Long Cylinder

Constructive Solid Geometry

Constructive Solid Geometry is the
process of combining simple objects
using Boolean operators to create
more complex objects.

Ray Marching makes this process
simple!

Union

Union is the min distance between
objects

We already are finding the minimum
distance in the ray marching algorithm
so we combine objects by default.

Intersection

To get the intersection, we just need to get

=

the maximum of the distances instead of
the minimum

can be close to 0 (near the surface) is if
both are close to O.

=

The only way the maximum of 2 distances

Difference

To get the difference, we negate the
distance of one of the object and take the

maximum distance.

This essentially creates an object that can
only exist outside the inverted object and
inside the other object

Smoothing

By applying a blending function we can smooth out
the edges between objects

smoothUnion (dl d2 k) {

h = max(k - |dl - d2|, 0.0)

Smoothing Examples for Difference

K =0.6 K=09

min(dl, d2) - h * h * 0.25/k

No Smoothing

Rendering Clouds

- A texture function returns a [0, 1.0] texture value T for some input p(x,y,z)
- We can additionally march through our surfaces and generate texture values in 3d

Noise Functions

Gardner Noise Perlin Noise

n
i+l

n
+ To]izzl[CiSin(FY].Y # PYe) # T,]

Results

- Gardner Sphere, Perlin Sphere, Depth Marched Gardner Sphere, Depth Marched
Perlin Sphere

- Lighting can be applied to improve physical plausibility

Procedural Surfaces

- We can modify the SDF of a surface with a procedural displacement value

- Similar to bump mapping, but alters the surface rather than texture
- We get bump mapped textures “for free” with gradient normals

Fractals - Mandelbulb

-Ray marching works well with infinitely complex shapes like fractals. Analytic

intersection doesn’t exist

-No function that tells you “your ray is X units of distance away from the fractal”

-There is a function that tells you the fractal is at MOST X units of distance away

Parallelization using CUDA

Algorithm 1 : Algorithm executed by each Thread/Pixel

i « Threadldx.x + BlockDim.x * BlockIdx.x

Jj « Threadldx.y + BlockDim.y * Blockldx.y
Ensure: i < Image_Width and j < Image_Height

N <« No_of_Samples

Colorij < 0

while N # 0 do

Programmer (Software) GPU (Hardware)

i+ = Random(-1,1)

Jj+ = Random(-1,1)

ray = Compute_Ray(Camera_Info, i, j)
Color;j+ = Compute_Color(3D_Scene, ray)
N«N-1

end while
FrameBuf fer[j,i] = Colorij/No_of_Samples

Diagram depicting software and hardware abstraction for
GPU programming

The Algorithm run by each Thread

Parallelization Experiments and Results

Resolution | Block Size | Number of Samples | Parallel Time | Serial Time | Speed Up | Branch Efficiency | A/T Occupancy
256x256 8x8 0.027s 29.483s 1091.963 99.27 83.42/87.5
256x256 16x16 0.031s 29.483s 951.065 99.27 80.14/87.5
256x256 32x8 0.042s 29.483s 701.976 97.54 76.59/83.33
256x256 128x1 0.038s 29.483s 775.868 99.27 77.37/83.33
256x256 256x1 0.033s 29.483s 893.424 98.65 79.28/87.5
512x512 8x8 0.073s 117.817s 1613.932 99.38 82.74/87.5
512x512 16x16 0.081s 117.817s 1454.531 99.27 78.94/87.5
512x512 32x8 0.096s 117.817s 1227.260 99.27 72.41/83.33
512x512 128x1 0.092s 117.817s 1280.620 98.65 74.53/87.5
512x512 256x1 0.093s 117.817s 1266.849 98.65 74.68/87.5
1024x1024 8x8 0.191s 476.936s 2497.047 99.38 83.65/87.5
1024x1024 16x16 0.209s 476.936s 2281.990 98.65 81.12/87.5
1024x1024 32x8 0.243s 476.936s 1962.700 99.38 74.64/83.33
1024x1024 128x1 0.241s 476.936s 1978.988 98.65 75.23/83.33
1024x1024 256x1 0.244s 476.936s 1954.656 98.65 75.87/83.33

0| 00| C0| 00| C0[(00| 00| C0|CO|C0| 00|00 00|

(e}

Table 1: In the above table, we list the different parameter configurations of our CUDA program and the SpeedUp achieved for
those configurations. We also list the Branch Efficiency and Achieved/Theoretical Occupancy for each configuration.

Conclusion, Q&A

References

https://raytracing.github.io/
Geofirey Y. Gardner. Visual Simulation of Clouds. SIGGRAPH ‘85

Ken Perlin. 1985. An Image Synthesizer. SIGGRAPH 85
https://developer.nvidia.com/blog/accelerated-ray-tracing-cuda/

https://www.skytopia.com/project/fractal/mandelbulb.html

https://iquilezles.org/articles/distfunctions/

http://jamie-wong.com/2016/07/15/rav-marching-signed-distance-functions

https://michaelwalczyk.com/blog-ray-marching html

https://raytracing.github.io/
https://developer.nvidia.com/blog/accelerated-ray-tracing-cuda/
https://www.skytopia.com/project/fractal/mandelbulb.html
https://iquilezles.org/articles/distfunctions/
http://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/
https://michaelwalczyk.com/blog-ray-marching.html

