
Procedural Rendering with Ray Marching
Christian A. Robles

University of Southern California
Los Angeles, USA
roblesch@usc.edu

Hoseung Lee
University of Southern California

Los Angeles, USA
hoseungl@usc.edu

Samuel Yin
University of Southern California

Los Angeles, USA
slyin@usc.edu

Vansh Dhar
University of Southern California

Los Angeles, USA
vdhar@usc.edu

Figure 1: Procedural Perturbations, Constructive Solid Geometry, Marched Depth Clouds

ABSTRACT
Ray tracing requires evaluation of explicit ray-surface intersections.
Complex shapes can be difficult to model as they must be broken
down into an aggregate of many primitives, and ray tracing scales
poorly with the number of objects in the scene. Ray marching
allows us to model complex shapes more efficiently by implicitly
identifying intersections with surfaces through the use of a Signed
Distance Function. With ray marching, we can efficiently model
and render complex shapes, create new shapes with constructive
solid geometry, and render procedural materials and surfaces.

1 INTRODUCTION
Let a scene consist of a set of surfaces in a 3d world coordinate
space with a camera at some position. We will generate an image
by sending rays through each pixel coordinate in the camera’s
viewport, determining if an intersection occurs, and evaluating a
material at that intersection.

Consider a ray tracing renderer. We determine the color of each
pixel by comparing this ray to each object in the scene and determin-
ing if an intersection occurs, then evaluating material properties.
Consider a simple sphere primitive. Ray-sphere intersection re-
quires solving | (𝑃 (𝑡) −𝐶) |2 = 𝑟2 for some ray 𝑃 (𝑡) = 𝐴 + 𝑡𝑏 and
some sphere with center 𝐶 and radius 𝑟 . We must additionally de-
cide which intersection point is nearest and in front of the camera,
if we are viewing from the inside or outside of the sphere, and
calculate a surface normal to calculate the appropriate material
color at that intersection. Even for a relatively simple primitive

such as a sphere, determining a ray-surface intersection for every
surface in a scene is a computationally expensive task.

Figure 2: Evaluating a scene with ray tracing, via Wikimedia
Commons. (https://w.wiki/55Pu).

In ray tracing, we are limited to only those surface primitives
where we can explicitly calculate a ray-surface intersection. Planar
surfaces can be solved with a ray-plane intersection and inside-
outside test. Various shapes and orientations of surfaces can be
derived by model transformations of translations rotations and
scales. Higher complexity surfaces that would be otherwise too
difficult to evaluate directly can be modeled by the composition of
many planar primitives, but performance scales poorly with the
number of surfaces in the scene. Complex materials additionally
require even more rays to be cast for lighting, scattering, and trans-
mission. Effects like soft shadows and anti-aliasing further degrade
performance, requiring a polynomial total number of rays to be
cast to determine the color of an individual pixel.

https://w.wiki/55Pu


Consider a ray marching renderer. We again determine the color
of each pixel by evaluating the scene in the direction of a camera
ray. Rather than evaluating the intersection between this ray and
any surface in the scene, we instead let the scene provide a Signed
Distance Function which evaluates some point 𝑝 (𝑥,𝑦, 𝑧) and returns
the approximate distance 𝑑 between 𝑝 and the nearest surface in the
scene. If the value is positive, we are 𝑑 units away from the nearest
surface. If it is negative, we are𝑑 units inside the surface. If𝑑 is close
to zero, then we can say we are intersecting the nearest surface.
Starting from 𝑡 = 0, we will for each ray evaluate the distance to
the closest surface in the scene 𝑑 and march 𝑑 units in the direction
of the ray. We will evaluate the scene again and repeat this process
until 𝑑 is near-zero, or until the ray terminates due to a march limit
or a maximum depth along the ray 𝑡𝑚𝑎𝑥 .

Figure 3: Marching along a ray using the SDF of the scene,
via Wikimedia Commons. (https://w.wiki/55Ps).

In the ray marching model, ray-surface intersections no longer
require explicit evaluation of intersection formulae. Instead, we
implicitly model ray-surface intersections by marching down the
ray until the distance to the scene is near-zero. With these im-
plicit intersections, we are no longer constrained to simple surface
primitives. We can render any surface that has a defined distance
function. Additionally, we can model scenes of complex functions
like fractals or noise functions by mapping their values to distance
values. We can combine distance functions for multiple surface
primitives by union or intersection, and interpolate between them
with smoothing functions. We can model 3D materials by stepping
through them and evaluating functions along each step. Surface
normals no longer require explicit evaluation and can instead be
calculated by the gradient of the distance function.

2 RENDERER IMPLEMENTATION
We implement our renderer from reference code provided by Peter
Shirley’s Ray Tracing in One Weekend. We use the template code
Peter provides up to Chapter 4: Rays, a Simple Camera, and Back-
ground. We also use the Anti Aliasing techniques from Chapter 7,
and the Positionable Camera from Chapter 11. We follow Peter’s
interface patterns for surfaces and materials, with some modifi-
cations. We rename hittable to surface, and hittable_list to scene.
We discard all ray tracing functionality and replace it with our
implementations of ray marching.

2.1 Interfaces
2.1.1 Surface. The surface class is an interface for intersectable
objects in the scene. Any class that implements surface must accept

in its constructor a valid pointer to a material. It must provide an
implementation for

double distance(const vec3& p)

The distance function returns the signed distance from some
point 𝑝 (𝑥,𝑦, 𝑧) and the surface. If the result is negative, 𝑝 is consid-
ered inside the surface.

2.1.2 Material. A class that implements thematerial interfacemust
implement

vec3 color(ray &r, vec3 p, vec3 N,

vector <light > lights)

The color function accepts an incoming ray, an intersection point,
a surface normal, and a list of directional lights. It returns the color
of the material evaluated by those parameters.

2.1.3 Scene. The scene class manages objects and lights in a scene,
and maintains internal lists of pointers to instances of these classes.
It provides the following key functions:

bool near_zero(double d)

Returns true if 𝑑 is smaller than machine-epsilon: the difference
between 1.0 and the next value representable by the floating-point
type.

double distance_estimator(vec3 p)

Iterates over the list of scene surfaces and returns the distance
from some point 𝑝 (𝑥,𝑦, 𝑧) and the surface nearest that point.

vec3 normal(vec3 &p)

Returns the "surface normal" at some point 𝑝 (𝑥,𝑦, 𝑧). We take a
small step along each of the 𝑥,𝑦, 𝑧 axes and return the unit length
vector in the direction of the gradient of the distance function.

bool march(ray& r, hit_record& rec)

Beginning at 𝑡 = 0, march evaluates the distance from the point
along the ray 𝑟 at 𝑡 to the nearest surface in the scene. If the distance
is near zero, march will terminate and return true, and store the
information about the intersection and the material of the surface
intersected on the hit record. If the distance is not near zero, it will
increase 𝑡 by 𝑑 with a minimum step size of 0.001 and evaluate
the distance estimator again. Will terminate if a surface is hit or if
𝑡 ≥ 𝑡𝑚𝑎𝑥 .

vec3 ray_color(ray& r)

Evaluates a ray by performing marching. If a surface is hit,
queries the material properties for the color evaluated at the point
of intersection. Otherwise, returns the background color of the
scene.

2.2 Surface Primitives
The following classes provide implementations for surface. In each
formulation, 𝑝 refers to some point 𝑝 (𝑥,𝑦, 𝑧) along a ray. In our
notation | |𝑣 | | denotes the Euclidean norm for some vector 𝑣 , and |𝑣 |
denotes a component-wise absolute value for some vector 𝑣 .𝑀𝑖𝑛
and𝑀𝑎𝑥 operations are also component-wise.

https://w.wiki/55Ps


Procedural Rendering with Ray Marching

2.2.1 Sphere. An instance of sphere is specified by a center 𝐶 and
a radius 𝑟 .

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = | | (𝑝 −𝐶) | | − 𝑟

2.2.2 Box. An instance of box is specified by a vector 𝐵 represent-
ing the distance from the center to the edges of the box -

𝑞 = |𝑝 | − 𝐵
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = | |𝑚𝑎𝑥 (𝑞, 0) | | +𝑚𝑖𝑛(𝑚𝑎𝑥 (𝑞𝑥 ,𝑚𝑎𝑥 (𝑞𝑦, 𝑞𝑧)), 0)

2.2.3 Equilateral Triangular Prism. An instance of a triangular
prism is specified by a center C, prism length L, and triangle height
H.

𝑞 = |𝑝 −𝐶 |
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =𝑚𝑎𝑥 (𝑞𝑧 − 𝐻𝑦,𝑚𝑎𝑥 (𝑞𝑥 ∗ 0.866 + 𝑝𝑦/2,−𝑝𝑦) − 𝐻𝑥/2)

2.2.4 Cylinder. An instance of a cylinder is specified by a center
𝐶 , height 𝐻 , and radius 𝑟 .

𝑞 = 𝑝 −𝐶
𝑑𝑥 = |𝑙𝑒𝑛𝑔𝑡ℎ(𝑞𝑥𝑧) − 𝑟 |
𝑑𝑦 = |𝑙𝑒𝑛𝑔𝑡ℎ(𝑞𝑦) − 𝐻 |

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =𝑚𝑖𝑛(𝑚𝑎𝑥 (𝑑𝑥 , 𝑑𝑦), 0) + | |𝑚𝑎𝑥 (𝑑, 0) | |

2.2.5 Pyramid. An instance of a pyramid with a constant square
1 × 1 base is specified by a center 𝐶 and height 𝐻 .

𝑎 = 𝐻2 + 1/4
𝑝 = 𝑝 −𝐶
𝑝𝑥𝑧 = |𝑝𝑥𝑧 |

𝑝𝑧 > 𝑝𝑥 ? 𝑝𝑥𝑧 = 𝑝𝑧𝑥

𝑝𝑥𝑧 = 𝑝𝑥𝑧 − 1/2
𝑏 = (𝑝𝑧 , 𝐻 ∗ 𝑝𝑦 − 𝑝𝑥/2, 𝐻 ∗ 𝑝𝑥 + 𝑝𝑦/2)

𝑐 =𝑚𝑎𝑥 (−𝑏𝑥 , 0)
𝑑 = 𝑐𝑙𝑎𝑚𝑝 ((𝑏𝑦 − 𝑝𝑧/2)/(𝑎 + 1/4), 0, 1)

𝑒 = 𝑎 ∗ (𝑏𝑥 + 𝑠)2 + 𝑏2𝑦
𝑓 = 𝑎 ∗ (𝑏𝑥 + 𝑑/2)2 + (𝑏𝑦 − 𝑎 ∗ 𝑑)2

𝑚𝑖𝑛(𝑞𝑦,−𝑞𝑥 ∗ 𝑎 − 𝑞𝑦/2) > 0 ? 𝑔 = 0 : 𝑔 =𝑚𝑖𝑛(𝑎, 𝑏)

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =

√︃
(𝑔 + 𝑏2𝑧)/𝑎 ∗ 𝑠𝑖𝑔𝑛(𝑚𝑎𝑥 (𝑏𝑧 ,−𝑝𝑦))

2.2.6 Infinite Cylinder. An instance of an infinite cylinder is speci-
fied by a center 𝐶 and radius 𝑅. Its distance function is identical to
a cylinder without comparing the 𝑦 coordinate.

Figure 4: Triangular Prism, Cylinder, Pyramid, Infinite Cylin-
der

Figure 5: Union, Intersection, Difference

2.3 Materials
2.3.1 Diffuse. The diffuse class implements the color function to
return the color 𝐶 as

𝐶 = (𝐾𝑠
∑︁
𝐿

(𝑙𝑒 (𝑅 · 𝐸)𝑠 ]) + (𝐾𝑑
∑︁
𝐿

(𝑙𝑒 (𝑁 · 𝐿)) + (𝐾𝑎 ∗ 𝑙𝑎)

2.3.2 Clouds. We implement the materials perlin_cloud_2d, per-
lin_cloud_3d, gardner_cloud_2d and gardner_cloud_3d by mapping
surface coordinates to a noise function and attenuating output color
by march depth. Described in section 4.

2.3.3 Normals. Maps a normal 𝑁 to RGB as

𝐶 = (𝑁 + 1)/2

2.3.4 Flat. Returns a constant color.

3 CONSTRUCTIVE SOLID GEOMETRY
Constructive Solid Geometry is the technique of combining primi-
tives to form a more complex object using Boolean operators such
as union, difference, and intersection. Ray marching makes CSG easy.
When a signed distance function returns a positive value, it means
it is outside of the object. A negative SDF means we are inside of
the object. When can use this property to implement the Boolean
operations with combination and negation of the SDFs for two or
more surfaces.

3.0.1 Union. The union of two objects is computed simply by the
minimum of the distances of two objects. Since we are already
returning the surface nearest to the point in our distance estimator
function, this operation is already handled by the ray marching
algorithm.

3.0.2 Intersection. The intersection of two objects is the area in
which both objects converge. To get the intersection of two objects,
distance to both objects should be less than or equal to zero. This
creates an object that only exists at the intersection of the two
objects.

3.0.3 Difference. Finally, the difference of two objects is the maxi-
mum of the distance functions with one function negated. Flipping
the sign inverts the object so everything that was considered inside
an object is now outside and vice versa. The object now only exists
if it is inside the non-inverted object and outside of the inverted
object, resulting in one area "cutting" into the other.



Figure 6: Smooth union with k = 0, 0.2, 0.6, 0.9

3.0.4 Smoothing. We can blend the intersection of two objects by
interpolating where the objects approach each other. We can apply
smoothing to union as

h = max(k - abs(d1 - d2), 0.0);

return min(d1, d2) - h * h * 0.25/k;

Where 𝑘 is some value between 0 and 1 and controls the amount
of smoothing. For intersection and difference, we apply the same
logic as before: using max instead of min and flipping the sign for
the difference.

4 PROCEDURAL TEXTURES
Procedural generation of 3D clouds is a complex challenge in render-
ing. Clouds in real-time applications are often drawn by mapping
pre-rendered 2D textures at distances or on volumes not interactable
by the camera. However, these approaches fall apart when viewed
at shallow angles or positioned near the camera. We will examine
how ray marching can be leveraged to generate 3D textures on
marchable depth surfaces to approximate the appearance of clouds.

We will examine two noise functions for generating cloud tex-
tures. The first is proposed by Geoffrey Y. Gardner in his paper
Visual Simulation of Clouds. The second is the famous Perlin Noise,
originally proposed by Ken Perlin in his paper An image synthesizer.

4.1 Gardner Noise
In Visual Simulation of Clouds, Gardner proposes a texturing func-
tion that approximates the appearance of clouds. We refer to this
function as Gardner Noise. It models textures as a product of sums
of 3 < 𝑛 < 8 sine waves

𝑇 (𝑋,𝑌, 𝑍 ) =𝑘
𝑛∑︁
𝑖+1
[𝐶𝑖 sin(𝐹𝑋𝑖𝑥 + 𝑃𝑋𝑖 ) +𝑇0]

×
𝑛∑︁
𝑖=1
[𝐶𝑖 sin(𝐹𝑌𝑖𝑌 + 𝑃𝑌𝑖 ) +𝑇0]

Where frequencies and coefficients are chosen by

𝐹𝑋𝑖+1 = 2𝐹𝑋𝑖
𝐹𝑌𝑖+1 = 2𝐹𝑌𝑖
𝐶𝑖+1 = .707𝐶𝑖

And 𝑃𝑋𝑖 and 𝑃𝑌𝑖 are determined by

𝑃𝑋𝑖 = 𝜋/2 sin(.5𝐹𝑌𝑖−1𝑌 ) + 𝜋 sin(𝐹𝑋𝑖𝑍/2) 𝑓 𝑜𝑟 𝑖 > 1
𝑃𝑌𝑖 = 𝜋/2 sin(.5𝐹𝑋𝑖−1𝑖𝑋 ) + 𝜋 sin(𝐹𝑋𝑖𝑍/2) 𝑓 𝑜𝑟 𝑖 > 1

𝑇0 is a parameter controlling contrast, and 𝑘 is computed such
that the maximum of 𝑇 (𝑋,𝑌, 𝑍 ) ≈ 1.

4.2 Perlin Noise
In his paper An image synthesizer, Ken Perlin describes a noise func-
tion that accepts a 𝑛-vector and returns a value with the qualities of
statistical invariance under rotation and translation and a narrow
bandpass limit in frequency. We use 3-noise, which is constructed
by

1. Construct a 3 dimensional grid of size 𝑥 by 𝑦 by 𝑧.
2. Assign to each grid intersection a pseudo-random unit length

gradient vector 𝑣𝑥𝑖 ,𝑦𝑖 (𝑥,𝑦, 𝑧)
3. For some input 𝑝 (𝑥,𝑦, 𝑧), determine which grid cell contains 𝑝 .

Identify the corners of that cell and calculate an offset vector from
each corner to 𝑝 .

4. For each corner, calculate the dot product of its offset vector
and its gradient vector.

5. Interpolate the grid corner dot products at 𝑝 and return this
value as the result.

4.3 Procedural Clouds
Using noise to generate textures is simple.We evaluate a ray-surface
intersection and pass the point 𝑝 (𝑥,𝑦, 𝑧) to one of these functions
and use the [0, 1.0] result as a texture value 𝑇 . Gardner phase and
coefficient parameters can be tuned to modify the size and variance
of the cloud-like textures, and Perlin noise can be tuned to map
input coordinates to larger or smaller gradient grids for fuzzier or
granular textures.

We can additionally march through surfaces to generate more
convincing 3D textures. We accept as a material parameter the
approximate depth of a surface and use this value to determine a
marching step bound and step size. We use a cutoff threshold to
march past low texture values and attenuate the final result by a
combination of step size and step count.

Figure 7: Surface Mapped and Depth Marched Gardner &
Perlin Clouds

5 PROCEDURAL SURFACES
In section 3 we saw how we can alter surfaces by altering the SDF.
We can create a new class of surfaces we call procedural surfaces
by combining this technique with our noise functions.

Procedural surfaces are analogous to the bump mapped textures.
Bumpmaps use lighting effects to provide the appearance of surface
variation, but do not actually affect surface geometry. With proce-
dural surfaces, we can create more convincing effects by altering
the surface directly. Additionally, we can render fractals and other
complex functions by mapping values to an SDF over some defined
set of inputs.



Procedural Rendering with Ray Marching

5.1 Displacement Surfaces
Sphere perturbations are simple - for some displacement function
𝐷 , we add its value to the SDF of a sphere

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = (𝑝 −𝐶) − 𝑟 + 𝐷
We implement two displacement surfaces. Perlin Sphere uses Per-

lin Noise (4.1.2) to evaluate 𝐷 (𝑥,𝑦, 𝑧). Perturbed Sphere implements
𝐷 as a sum of sine waves

𝐷 (𝑥,𝑦, 𝑧) = 𝑐 ∗ sin(𝜑 + 𝑥) ∗ sin(𝜑 + 𝑦) ∗ sin(𝜑 + 𝑧)
Where 𝑐 is some coefficient that modulates the intensity of dis-

placement and 𝜑 is some constant phase shift.

Figure 8: Diffuse Perturbed and Perlin Spheres

5.2 Fractals
Fractals are infinitely complex mathematical shapes that recurse as
you zoom into an area of a fractal. These infinitely complex fractals
could not be rendered in ray tracing due to having no analytical
intersection. With ray marching, we can use distance functions to
render visualizations of complex relations such as the Mandelbulb
fractal. Our implementation of a Mandelbulb is formulated as

𝑟 =

√︃
𝑥2 + 𝑦2 + 𝑧2

𝜙 = arctan
𝑦

𝑥
= arg(𝑥 + 𝑦𝑖 )

\ = arctan
√︁
𝑥2 + 𝑦2
𝑧

= arccos
𝑧

𝑟

v𝑛 := 𝑟𝑛
〈
sin

(
𝑓 (\, 𝜙)

)
cos

(
𝑔(\, 𝜙)

)
, sin

(
𝑓 (\, 𝜙)

)
sin

(
𝑔(\, 𝜙)

)
, cos

(
𝑓 (\, 𝜙)

)〉

Figure 9: Mandelbulbs at different view angles

For complex shapes, it is important to supersample rays to re-
duce aliasing artifacts introduced by high variance within pixel
coordinates.

6 PARALLELIZATION
A ray marching rendering system requires more computational
resources than ray tracing due to the simple fact that in ray tracing,
computation is done only at the point of object intersection. In ray
marching, distance functions are evaluated for every iteration of
the march. Thus, to improve the execution time of our renderer,
we utilize the power of parallel computing with the help of CUDA
programming and NVIDIA GPU.

6.1 Platform Used
Hardware specification: The CUDA program was tested on a 64-bit
operating system with 16 GB of Ram and an AMD Ryzen 9 5900HX
processor, along with a Nvidia GeForce RTX 3070 GPU (Laptop
version).

Software Specification: The hardware ran on Windows 11 OS
and we used Microsoft Visual Studio as our programming IDE to
develop the CUDA program. We also used Nvidia Nsight Compute
to profile our CUDA program to better understand the resource
utilization of the GPU while the program was running.

6.2 CUDA Programming Overview
In GPU programming, there are several parameters on both the soft-
ware side and the hardware side that affect performance. Whenever
a part of the program is outsourced to a GPU to be computed, On
the software side: the total number of threads/ processors used are
represented by a "Grid", which in our case will represent the image
being rendered, therefore, the total number of threads will be equal
to the number of pixels in our image. These threads are further
divided into blocks which are independent units of execution with
no communication possible between different blocks.

Figure 10: Diagram depicting software and hardware abstrac-
tion for GPU programming

Now on the hardware side: The total number of cores/processors
in the GPU are divided between Streaming Multiprocessors (SMs)
such that each block can be executed only on a single SM with
the possibility of several blocks being executed concurrently on
the same SM if the hardware resource allows it. Thus, fine-tuning
parameters like block size for an image of specific resolution being
renderer based on the resource utilization of the hardware can lead
to a significant increase in SpeedUp.

𝑆𝑝𝑒𝑒𝑑𝑈𝑝 = 𝑆/𝑃 (1)

here, S: is the Program Serial Execution Time and P: is the Program
Parallel Execution time



Resolution Block Size Number of Samples Parallel Time Serial Time Speed Up Branch Efficiency A/T Occupancy
256x256 8x8 8 0.027s 29.483s 1091.963 99.27 83.42/87.5
256x256 16x16 8 0.031s 29.483s 951.065 99.27 80.14/87.5
256x256 32x8 8 0.042s 29.483s 701.976 97.54 76.59/83.33
256x256 128x1 8 0.038s 29.483s 775.868 99.27 77.37/83.33
256x256 256x1 8 0.033s 29.483s 893.424 98.65 79.28/87.5
512x512 8x8 8 0.073s 117.817s 1613.932 99.38 82.74/87.5
512x512 16x16 8 0.081s 117.817s 1454.531 99.27 78.94/87.5
512x512 32x8 8 0.096s 117.817s 1227.260 99.27 72.41/83.33
512x512 128x1 8 0.092s 117.817s 1280.620 98.65 74.53/87.5
512x512 256x1 8 0.093s 117.817s 1266.849 98.65 74.68/87.5
1024x1024 8x8 8 0.191s 476.936s 2497.047 99.38 83.65/87.5
1024x1024 16x16 8 0.209s 476.936s 2281.990 98.65 81.12/87.5
1024x1024 32x8 8 0.243s 476.936s 1962.700 99.38 74.64/83.33
1024x1024 128x1 8 0.241s 476.936s 1978.988 98.65 75.23/83.33
1024x1024 256x1 8 0.244s 476.936s 1954.656 98.65 75.87/83.33

Table 1: In the above table, we list the different parameter configurations of our CUDA program and the SpeedUp achieved for
those configurations. We also list the Branch Efficiency and Achieved/Theoretical Occupancy for each configuration.

6.3 Parallel Algorithm
This section describes the algorithm/psuedo code run by each thread
of the program.

Algorithm 1 : Algorithm executed by each Thread/Pixel
𝑖 ← 𝑇ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥 .𝑥 + 𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥 ∗ 𝐵𝑙𝑜𝑐𝑘𝐼𝑑𝑥 .𝑥
𝑗 ← 𝑇ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥 .𝑦 + 𝐵𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑦 ∗ 𝐵𝑙𝑜𝑐𝑘𝐼𝑑𝑥 .𝑦

Ensure: 𝑖 < 𝐼𝑚𝑎𝑔𝑒_𝑊𝑖𝑑𝑡ℎ and 𝑗 < 𝐼𝑚𝑎𝑔𝑒_𝐻𝑒𝑖𝑔ℎ𝑡
𝑁 ← 𝑁𝑜_𝑜 𝑓 _𝑆𝑎𝑚𝑝𝑙𝑒𝑠
𝐶𝑜𝑙𝑜𝑟𝑖 𝑗 ← 0
while 𝑁 ≠ 0 do

𝑖+ = 𝑅𝑎𝑛𝑑𝑜𝑚(−1, 1)
𝑗+ = 𝑅𝑎𝑛𝑑𝑜𝑚(−1, 1)
𝑟𝑎𝑦 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒_𝑅𝑎𝑦 (𝐶𝑎𝑚𝑒𝑟𝑎_𝐼𝑛𝑓 𝑜, 𝑖, 𝑗)
𝐶𝑜𝑙𝑜𝑟𝑖 𝑗+ = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒_𝐶𝑜𝑙𝑜𝑟 (3𝐷_𝑆𝑐𝑒𝑛𝑒, 𝑟𝑎𝑦)
𝑁 ← 𝑁 − 1

end while
𝐹𝑟𝑎𝑚𝑒𝐵𝑢𝑓 𝑓 𝑒𝑟 [ 𝑗, 𝑖] = 𝐶𝑜𝑙𝑜𝑟𝑖 𝑗/𝑁𝑜_𝑜 𝑓 _𝑆𝑎𝑚𝑝𝑙𝑒𝑠

6.4 Experiments and Results
As discussed in section 6.2, several parameters can affect the execu-
tion time of our rendering system. The focus of our experiments
will be to understand the range of the parameters for which we
can achieve maximum speedup. The main parameters of focus will
be: Block size (Number of Threads in each block), Grid size (Image
Resolution). To better understand Resource utilization of our GPU
based on these parameters we will also look at Branch Efficiency
and Achieved Occupancy.

Branch Efficiency is the ratio of similar work done by threads in
a block to the total work done by threads in a block. (Note: Threads
in a block run concurrently only if they do similar work, thus, this
ratio should be high to achieve maximum performance). Achieved
Occupancy is the ratio of number of active processors to the total

number of processors in a Streaming Multiprocessor. (Note: This
ratio should be as close to theoretical occupancy as possible to
achieve maximum performance).

Thus, for a range of parameter values the Program Parallel Exe-
cution Time, Program Serial Execution Time and SpeedUp can be
seen in Table 1. By analysing the results in Table 1, we can see that
SpeedUp scales with Image Resolution (with the highest SpeedUp
achieved being ≈ 2500x), for any Image Resolution Block Size of
’8x8’ yield highest SpeedUp. Branch Efficiency remains high for
any parameter configuration, therefore, divergent behaviour in our
program is bare minimum. Although the Theoretical Occupancy
is not close to 100% due to the register utilization of our CUDA
program, the achieved occupancy for various parameter configura-
tion remains close to theoretical occupancy, thus extracting high
performance benefit from the GPU.

7 CONCLUSION
In this project we developed a Ray Marching rendering system
and demonstrated the unique properties of the Signed Distance
Function with Constructive Solid Geometry, Procedural Materials,
Displacement Surfaces and Fractals. Finally, we utilized the power
of parallel computing via Nvidia GPU and CUDA programming to
achieve a Speed Up factor of 2500.

REFERENCES
[1] Peter Shirleyl. Ray Tracing In One Weekend. https://raytracing.github.io
[2] Geoffrey Y. Gardner. Visual Simulation of Clouds. SIGGRAPH ‘85
[3] Ken Perlin. 1985. An Image Synthesizer. SIGGRAPH ‘85
[4] https://developer.nvidia.com/blog/accelerated-ray-tracing-cuda
[5] https://www.skytopia.com/project/fractal/mandelbulb.html
[6] https://iquilezles.org/articles/distfunctions
[7] http://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions
[8] https://michaelwalczyk.com/blog-ray-marching.html

https://raytracing.github.io
https://developer.nvidia.com/blog/accelerated-ray-tracing-cuda
https://www.skytopia.com/project/fractal/mandelbulb.html
https://iquilezles.org/articles/distfunctions
http://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions
https://michaelwalczyk.com/blog-ray-marching.html

	Abstract
	1 Introduction
	2 Renderer Implementation
	2.1 Interfaces
	2.2 Surface Primitives
	2.3 Materials

	3 Constructive Solid Geometry
	4 Procedural Textures
	4.1 Gardner Noise
	4.2 Perlin Noise
	4.3 Procedural Clouds

	5 Procedural Surfaces
	5.1 Displacement Surfaces
	5.2 Fractals

	6 Parallelization
	6.1 Platform Used
	6.2 CUDA Programming Overview
	6.3 Parallel Algorithm
	6.4 Experiments and Results

	7 Conclusion
	References

